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a b s t r a c t

Due to the increasing awareness of climate change, depletion of natural resources, and increasing world
population, companies in the agri-food sector need to redesign their existing supply chains and take into
account both the economic and environmental impact of their operations. In practice not all the required
information is available in advance due to various sources of uncertainty in agri-food supply chains. In
this research a multi-objective two-stage stochastic programming model is proposed to analyse and
evaluate the economic and environmental impacts to account for uncertainty in agri-food supply chains.
A mushroom supply chain in the Netherlands is presented as an illustrative case study. Optimal pro-
duction planning decisions calculated with a two-stage stochastic programming model are compared
with the results of an equivalent deterministic model. The results of the optimizations show that ac-
counting for stochasticity in important model parameters can reduce the difference between expected
and realized economic performance by approximately 4% on average. Moreover, this paper demonstrates
that including stochastic model parameters can reduce the environmental impact without compromising
the current economic performance. Given the assumptions in the setup of the case study and the
available information, it is concluded that applying a 2-stage stochastic programming approach for
production planning decisions can lead to improved economic and environmental performance in an
agri-food supply chain. New findings in real-life case studies are needed to get profound insights and
understanding on the impact of uncertainty on production planning decisions in sustainable agri-food
supply chains.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Due to increased exposure in the media about climate change
and depletion of natural resources, society is more aware of the
environmental impact caused by food production. At the same time
it is estimated that by 2050 overall food production must increase
by some 70% to feed the increasing world population (Alexandratos
and Bruinsma, 2012). To be able to satisfy the needs of future
generations, agri-food supply chains must eliminate current in-
efficiencies and focus on more sustainable production. Eliminating
inefficiencies requires decision support tools that account for
intrinsic characteristics of food production. Moreover, sustainable
(A. Banasik), Argyris.
Jacqueline.Bloemhof@wur.nl
H. Claassen).
agri-food supply chains require more than just the economic vali-
dation of a single overriding objective (i.e. profit). Decision support
tools for sustainable agri-food supply chains need to simulta-
neously evaluate economic and environmental performance. Such
evaluations require not only the assessment of environmental and
economic performance but also the relationship and trade-offs
between these conflicting objectives.

Multi-objective optimization is particularly suitable for finding
the best compromise between economic and environmental di-
mensions of sustainability (Chaabane et al., 2011), and for deter-
mining eco-efficient solutions, i.e. solutions in which it is not
possible to decrease environmental damage unless increasing costs
(Quariguasi Frota Neto et al., 2009). In many cases from agri-food
supply chains multi-objective optimization models are determin-
istic, i.e. it is implicitly assumed that all model parameters are
known in advance. However, in practice not all the required infor-
mation for parameterization of production planning models is
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deterministic. Main sources of uncertainty in agri-food supply
chains are related to productivity (yields), estimated supply and
demand patterns, processing parameters, and prices (Soysal et al.,
2012).

Despite the increasing use of quantitative models in sustainable
supply chains (Brandenburg and Rebs, 2015), agri-food supply
chain models, which include both economic and environmental
criteria, rarely consider uncertainty in parameters. It is recognised
by Brandenburg et al. (2014) that there is a need for more stochastic
models for sustainable supply chains, as the amount of available
literature is limited and provides for further research opportunities.
Importance of accounting for uncertainty in agri-food supply chain
decision support models has been stressed in literature (Ahumada
and Villalobos, 2009), but, to the best of our knowledge, there are
no studies that quantify the consequences of uncertainty in data on
the environmental and economic performance in agri-food supply
chains.

This study aims to quantify the impact of accounting for
important sources of uncertainty in a decision support model for
production planning in an agri-food supply chain. The impact of
uncertainty on best environmental, best economic, and other eco-
efficient solutions is quantified using a two-stage stochastic pro-
gramming approach in a multi-objective optimization model.
Particularly in agri-food supply chains, many decisions have to be
taken in an early stage while yields and demand are often revealed
later in the production process. To decompose such multi-phase
planning decisions in eco-efficient agri-food supply chain, a
multi-objective two-stage stochastic programming model is pro-
posed. An illustrative real-life mushroom supply chain is presented
to demonstrate the potential benefits of treating uncertainty for the
optimization of production planning decisions. To compare the
performance of the generated solutions, a simulation is performed
to unravel the different objective values and generated solutions
depending on the realization of uncertainty in model parameters.

The paper is structured as follows: Section 2 presents an over-
view from literature on publications treating uncertainty in food
supply chains and on publications treating uncertainty in multi-
objective optimization. Section 3 introduces industrial mushroom
production. Section 4 describes methods and data, i.e. presents the
mathematical model, provides the data for considered case study,
and specifies the setup of numerical analysis. Section 5 discusses
the results of the model, and section 6 gives the conclusions of the
study.

2. Literature review

The data in real-world optimization problems are not exactly
known at the time the problem is being solved due to inevitable
estimation, measurement and implementation errors (Ben-Tal
et al., 2009). Incorporating uncertainty in some parameters of the
model may lead to a better representation of the actual problem
(Munhoz andMorabito, 2014). Moreover, food production is unique
in its complexity, and optimization-based decision support should
account for intrinsic characteristics of food production. Food
products are particularly characterised by seasonality, yield vari-
ability, products’ perishability and high fluctuations in demand and
prices (Akkerman et al., 2010). Therefore, in agri-food supply
chains, not all the required data are known in advance due to
various sources of uncertainty, i.e. risks related to the market,
fluctuating demand, production yields, and prices. These sources of
uncertainty should be taken into account in mathematical models
used to support decision making in agri-food supply chains to
achieve a better representation of the actual decision making
process. Ignoring important sources of uncertainty or using aver-
ages to parameterize deterministic models of the agri-food supply
chain may lead to calculated production planning decisions, which
if implemented, result in lower than expected overall economic and
environmental performance.

To deal with uncertain input parameters in models, a number of
approaches can be applied. The most popular approaches include
stochastic programming and robust optimization. Stochastic pro-
gramming models are used to determine production plans that
optimize the expected value of an objective function based on
numerous scenarios for realizations of uncertain data. Robust
optimization models are used to obtain robust production plans
that are less risky, immune to infeasibilities, and less sensitive to
realizations of uncertain data. The benefits of robust optimization
include the fact that exact distributions of uncertain parameters are
not necessary, and independently on the number of uncertain pa-
rameters the (transformed) model remains computationally trac-
table. For a detailed description of stochastic programming and
robust optimization see Birge and Louveaux (2011) and Ben-Tal
et al. (2009), respectively.

In stochastic programming some data parameters are uncertain,
and an accurate probability distribution of these parameters is
assumed to be available (Birge and Louveaux, 2011). The aim of
stochastic programming is to find the best solution depending on
the expected value of an objective function. Variations of stochastic
programming exist in terms of e.g. number of stages, types of re-
courses, or the inclusion of probabilistic (chance) constraints. The
difficulty of considering continuous distributions is often avoided
by introducing a discrete set of (limited) scenarios. However, a large
number of scenarios may be necessary to accurately resemble the
distributions of parameters, and the more scenarios the harder to
solve the considered problem to optimality (Keyvanshokooh et al.,
2016).

Stochastic programming and robust optimization approaches
are hardly applied in food production context. Pauls-Worm et al.
(2014) study lost sales in inventory problems for fresh food prod-
ucts with uncertain and fluctuating demand. A stochastic pro-
grammingmodel is developed to find order quantities tomeet cycle
fill rate service requirements while keeping outdating low. Guan
and Philpott (2011) present a production planning problem in
dairy industry under uncertain milk supply and formulate a multi-
stage stochastic programming model with a linear price-demand
curve. Soysal et al. (2015) develop a chance-constrained program-
ming model with demand uncertainty for a multi-period generic
inventory routing problem for perishable products with specific
attention to environmental considerations. Borodin et al. (2014)
propose a stochastic optimization model for the annual harvest
scheduling problem of cereal crop production. A chance con-
strained optimization model is proposed to minimize the risk of
crop quality degradation under meteorological uncertainty. Bohle
et al. (2010) propose a modified robust optimization approach to
solve an agricultural planning problem of wine grape harvesting
subject to uncertain labors harvesting productivity. Munhoz and
Morabito (2014) apply a robust optimization approach to an
aggregate production planning model for frozen orange juice con-
centrates to minimize total costs with uncertainty in juice acidity
parameters. It is observed that stochasticity in production yields,
which are highly uncertain in food production, is not considered in
the aforementioned studies. Moreover, hardly any of the above
mentioned publications take multiple conflicting objectives into
account.

Publications treating environmental and economic performance
in multi-objective optimization while including uncertainty in pa-
rameters in production planning are very scarce. Mirzapour Al-E-
Hashem et al. (2013) propose a two-stage stochastic program-
ming model for aggregate production planning with quantity dis-
counts in green supply chain with uncertain demand.
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Environmental performance is embedded in the presented model
by limiting the greenhouse gas emission from transportation and
waste produced to a predetermined level. Radulescu et al. (2009)
assume an uncertain amount of pollution emissions per unit of
product, and formulate two stochastic programming models for
production planning: a maximum expected return problem, and a
minimum pollution risk problem. Sazvar et al. (2014) propose a
multi-stage stochastic programming model to optimize costs and
total GHG emissions for a supply chain with deteriorating products
under uncertain demand. Amin and Zhang (2013) investigate the
impact of demand and return uncertainties on the closed-loop
supply chain network configuration using a multi-objective
model. A scenario-based stochastic programming approach is
used to minimize costs and an environmental objective. The
aforementioned publications apply multi-objective optimization in
supply chains under uncertainty. However, none of the studies
consider (fast moving) food products.

There are multiple calls in literature reviews for more stochastic
models on realistic case studies see e.g. Brandenburg et al. (2014).
Notably, most of the papers on eco-efficient supply chains assume
all data to be deterministic, and uncertainty is hardly taken into
account. Additionally, none of the sources related to food produc-
tion (e.g. production yields or demand), are included in publications
which present decision support models for eco-efficient supply
chains. To the best of our knowledge there is a lack of publications
considering environmental criteria in multi-objective optimization
with uncertain parameters to support production planning de-
cisions in agri-food supply chains. Moreover, the quantified impact
of treating uncertainty in optimizing different objectives associated
with sustainability is still unclear. This paper contributes to litera-
ture by 1) providing a stochastic programming model for a real life
sustainable supply chain optimization problem, and 2) quantifying
the impact of taking uncertainty into account on environmental
and economic performance of an agri-food supply chain.

3. Industrial mushroom production

This section describes an industrial mushroom production
(Fig. 1). The described chain is an example of an agri-food supply
chain in which crucial decisions need to be made before the actual
values of uncertain production and demand parameters reveal. This
gives rise to decompose the decision making process into multiple
steps, providing therefore a typical example in which multi-stage
decision making may have an added value above a commonly
applied deterministic approach.

All raw materials are first transported to facilities and then
processed industrially in factories that produce growing medium
for mushrooms, called substrate. Substrate comprises two layers:
compost, and casing soil. Production of compost takes place in
multiple phases and total duration of compost production takes a
few weeks (Banasik et al., 2017). The final product must be pro-
duced just-in-time, because compost cannot be stored for long due
to biological processes taking place in the compost inoculated with
mycelium.
Raw material providers

Fig. 1. A mushroom
Substrate is subsequently delivered to mushroom producers for
cultivation. Mushrooms are produced in multiple flushes, i.e.
mushroom productive periods between two subsequent (not pro-
ductive) growth periods of substrate. The same substrate can be
cultivated for limited number of flushes due to increasing risks for
pests and diseases. Different mushroom sizes are distinguished
based on the cap size, which determines the selling price of fresh
mushrooms. Each flush is associated with a yield of different sizes
of mushrooms and, moreover, each day's yield is associated with a
proportion of low quality mushrooms (irregular shape or colour).
Typically there is a distinction in selling prices of mushrooms,
depending on whether mushrooms are sold within the demand,
mushrooms that are sold above the demand (typically sold at an
alternative to fresh market, e.g. to sold to processing companies),
and low quality mushrooms. After cultivation, the spent mushroom
substrate must be disposed. Disposal of spent mushroom substrate
is costly due to high transportation volumes.

Mushroom production is intrinsically associated with various
sources of uncertainty, including production yields and demand
patterns, that considerably complicate decision making. Substrate
production facilities must plan their decisions well in advance,
while even in perfectly coordinated and collaborative mushroom
supply chain, it is unclear how much substrate the industrial pro-
duction facility should produce to optimize the performance of the
complete chain. This is difficult because mushroom producers can
adjust their production planning decisions (and as a result also
their demand for substrate) as a response to highly fluctuating
demand and uncertain yields of mushrooms. The impact of un-
certainty and the implications of production planning decisions on
environmental and economic performance should be evaluated
quantitatively to support effective decision making in practice.

4. Methods and data

To support decision making in a mushroom supply chain a
multi-objective model is proposed. The objectives include maxi-
mization of economic performance, and minimization of environ-
mental impact. A set of Pareto-efficient solutions (called eco-
efficient solutions when considered objectives relate to economic
and environmental impact) is derived to provide information on
required costs to improve environmental performance. Efficient
frontiers ensure finding a solution that compromises the consid-
ered economic and environmental criteria and therefore provide
valuable information to decision makers. To obtain eco-efficient
solutions the ε-constraint method is applied. For a detailed
description of this method the reader is referred to Ehrgott (2005).

To treat uncertainty in model parameters, a deterministic model
is implemented inwhich expected values of (uncertain) parameters
are used. Next, a two-stage stochastic programming model is
implemented. Any two-stage stochastic programming model
comprises first, and second stage decision variables. The first stage
variables refer to decisions that have to be taken before the actual
realization of uncertain parameters is available. After random
events have occurred, adjustments can be made by second stage
Mushroom producers

Demand for fresh 
mushrooms

Dispose waste

supply chain.
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decision variables.
This study follows a common approach to solve the two-stage

stochastic programming model by using sample average approxi-
mation based on Monte Carlo sampling (L€ohndorf, 2016). In this
method, the expected value of objective function is approximated
by solving the problem for a set of scenarios. A discrete set of sce-
narios is introduced to avoid the complexity of considering
continuous distributions.

In agri-food chains there are situations where infeasibilities are
not acceptable, for instance when the demand must be met exactly
due to strict periodic delivery contracts with customers, hard re-
strictions related to quality requirements and safety regulations of
perishable products, or in the presence of penalty systems for up-
per limits on production amounts and the level of environmental
impact. In such cases robust optimization is an appropriate
approach. Robust optimization provides for solutions that are im-
mune to infeasibilities but are more conservative. However, in the
specific case presented in this paper, infeasible solutions are hardly
an issue as there are no hard constraints on demand (over and
under achievement of demand is allowed at different price levels).
Therefore, robust optimization is outside the scope of this study,
and two-stage stochastic programming is used in this study to
investigate the impact of on decision making and on the optimal
solutions.

4.1. Multi-objective linear programming model

The optimization model for an industrial mushroom supply
chain supports interrelated production planning and harvesting
decisions between different links of the supply chain, and the
model is therefore used before the production starts. The purpose
Indices

c size of mushroom, c ¼
t time periods, t ¼ 1;…;

a age of cultivated compo
s scenario number, s ¼ 1

Monetary parameters

csa variable, labour, and dis
plc;t selling price of low qua
ppc;t selling price of mushroo
psc;t selling price of mushroo

Environmental parameters

e p environmental impact o
e w environmental impact o

Technical parameters

cap fac capacity of substrate pr
cap gr capacity of mushroom p
dt;s demand for mushrooms
lqa fraction of low quality m
p time processing time of raw
pdc;t;a;s yield of mushrooms size

Decision variables

Lc;t;s the amount of low qual
Mc;t;s the amount of premium
ODc;t;s the amount of surplus m
STPt;a the amount of compost
Zt;a the amount of compost
of the optimization is two-fold. First, the economic and environ-
mental objectives are optimized to find eco-efficient solutions,
which represent the trade-off between economic and environ-
mental criteria. Second, the impact of accounting for uncertainty
during the optimization using a two-stage stochastic program-
ming model on all eco-efficient solutions is investigated. The
mushroom supply chain is modelled as a single entity, i.e.
collaboration between substrate production facilities and mush-
room producers is assumed. This implies that the whole supply
chain is taken into account, instead of optimizing each link indi-
vidually. The optimization is relevant, therefore, for each link of
the supply chain (i.e. substrate production facilities, and mush-
room producers).

In the presented model first stage variables include the amount
of substrate produced in each time period (substrate production
facilities), and the amount of compost cultivated in each time
period (mushroom producers). Second stage variables include the
amount of mushrooms sold at each price, size, and period (mush-
room producers).

Model presented in this section has been adapted from Banasik
et al. (2017) to include uncertainty into account in important model
parameters. The uncertain model parameters include uncertain
yields of mushrooms, and uncertain demand. Demand for mush-
rooms is assumed not to depend on mushroom size. In the pre-
sented model, substrate production facilities are aggregated into
one, and thus the capacity of the single (aggregated) facility refers
to the total capacity of all substrate production facilities. Mushroom
producers are also aggregated into a single producer, and thus their
growing capacity and demand for mushrooms are combined.

For the mathematical description of the model the following
notation is introduced:
1;… ; C
T
st, a ¼ 1;…; A
;…; S

posal costs of substrate at age a [V/t]
lity mushrooms size c in period t [V/kg]
ms size c fulfilling the demand in period t [V/kg]
ms size c exceeding the demand in period t [V/kg]

f production per 1 kg of mushrooms
f waste disposal per 1 t of spent substrate

oduction facility for compost production [t]
roducer for compost cultivation [t]
in time period t in scenario s [kg]
ushrooms at age a

materials to produce compost
c in period t at age a in scenario s [kg ofmushrooms/t of compost]

ity mushrooms of size c sold in period t in scenario s
quality mushrooms of size c sold in period t in scenario s
ushrooms of size c sold in period t in scenario s
disposed in time period t at age a
cultivated in time period t at age a
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The model presented is a two-stage stochastic programming
model with S scenarios. The presented model is also used as a
deterministic model by considering only one scenario (S ¼ 1) and
using expected values for the uncertain parameters pdc;t;a;s and dt;s.

max

(
OFeco ¼ 1

S
*
X
c;t;s

�
ppc;t*Mc;t;s þ psc;t*ODc;t;s þ plc;t*Lc;t;s

�

�
X
t;a

csa*Zt;a

)

min

(
OFenv ¼ 1

S
*
X
c;t;a;s

pdc;t;a;s*e p*Zt;a þ
X
t;a

e w*STPt;a

)

Subject to:

Xp time�1

k¼0

Zt�k;a � cap fac ct; a ¼ 1 (1)

Mc;t;s þ ODc;t;s �
X
a
ð1� lqaÞ*pdc;t;a;s*Zt;a cc;ct;cs (2)

Lc;t;s ¼
X
a
lqa*pdc;t;a;s*Zt;a cc;ct;cs (3)

X
c
Mc;t;s � dt;s ct;cs (4)

X
a
Zt;a � cap gr ct (5)

Zt;a ¼ Zt�1;a�1 � STPt�1;a�1 ct; ca
��t >1; a>1 (6)

STPt;a ¼ Zt;a t ¼ T ;ca (7)

STPt;a ¼ Zt;a ct; a ¼ A (8)

The economic objective (OFeco) maximizes total profit. Total
profit comprises (i) total revenue, and (ii) total costs of substrate
cultivation, including the disposal costs. The environmental
objective (OFenv) minimizes total environmental impact. Environ-
mental impact is associated with (iii) cultivation, and (iv) spent
mushroom substrate disposal.

Constraints (1) ensure compost production capacity at pro-
cessing level. Constraints (2) and (3) calculate the amount of
mushrooms sold at different prices. Constraints (4) guarantee that
demand is covered only by premium quality mushrooms. Con-
straints (5) correspond to periodic capacity at the producer. Con-
straints (6) are recursive constraints, which entail that the amount
of substrate cultivated in a given period is not larger than in the
previous period. Restriction (7) and (8) ensure that the mushroom
cultivation stops in the last period of the considered planning ho-
rizon, and when cultivation has been taking place for the maximal
allowed number of days.
Fig. 2. Expected yield of small, medium and large mushrooms for maximal duration of
a single cultivation round (43 days).
4.2. Case study and data

Data presented in this section considers a real-life industrial
mushroom supply chain in the Netherlands. The presented data are
collected by interviews with industrial partners and collaborating
scientists from food processing who quantify the environmental
impact in this case study. The data for environmental impact of all
processes for the considered case is presented in Zisopoulos et al.
(2016).

Rawmaterials used for industrial mushroom production include
horse manure, chicken manure, straw, gypsum, ammonium sul-
phate, peat and lime stone. Total duration of compost production in
the real-life substrate production facilities is 27 days. The total
processing capacity of compost in substrate production facilities
over 27 days is limited to 44,415 t. Processed compost and mixed
casing soil ingredients are transported to the mushroom producers.
Ingredients, processing, transportation, and disposal costs account
for 229 V/t of compost.

The total growing capacity of mushroom producers is limited to
51,975 t of compost in each time period. Compost can be cultivated
for at most 43 growing days that is equivalent to three flushes of
mushrooms, which producers can obtained from cultivation. The
yield variations over production cycle for each size of mushrooms
(small, medium, large) are presented in Fig. 2. It can be observed,
that each subsequent flush of mushrooms is associated with lower
yield. Each flush is associated with a given percentage of low
quality mushrooms, i.e. the first, second, and third flush, accounts
for 5%, 10%, and 20% low quality mushrooms of yield, respectively.

Practitioners emphasize that some of the data are highly un-
certain. Despite all measures taken by the substrate production
facility to keep the quality of compost standardized, the yield of
mushrooms varies. Within this research the data on yields in first,
second, and third flush of mushrooms over a period of one year was
collected from 22 mushroom producers. Analysis of historical data,
confirmed by chi-squared goodness of fit tests, revealed that yield
fluctuations in each flush follow a Gaussian distribution with the
following parameters: (i) mean yield in the first flush of 192 kg of
mushrooms/t of compost and standard deviation of 17 kg of
mushrooms/t of compost, (ii) mean yield in the second flush of
109 kg of mushrooms/t of compost and standard deviation of 17 kg
of mushrooms/t of compost, and (iii) mean yield in third flush of
48 kg of mushrooms/t of compost with standard deviation of 15 kg
of mushrooms/t of compost.

Variable and labour cultivation costs for days 1 up to 31 are 3V/t
of compost per day, and for days 32e43 are 5 V/t of compost per
day. Additionally, ingredients, processing, transportation, and
disposal costs of spent mushroom compost (229 V/t of compost)
are included in variable and labour cultivation costs for the first day
of cultivation.

To consider the annual volatility in prices and demand, a time
horizon consisting of 365 days is considered (Fig. 3). According to
domain experts, the demand can deviate from the expected values
following a Gaussian distribution with standard deviation of 10%.

Environmental impact is expressed in this paper by cumulative
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exergy losses; an indicator based on exergy analysis. Exergy anal-
ysis enables to capture both quantity and quality of energy (Apaiah
et al., 2006), and has the potential to quantify the environmental
impact in a single unit (MJ). Description of the concept of exergy
analysis, as well as the calculation of exergy losses for this case
study is presented in Zisopoulos et al. (2016). Exergy losses account
for 0.3MJ/kg of grown mushrooms. Exergy losses associated with
waste disposal account for 5959MJ/t of spent mushroom compost,
and include exergy losses due to transportation and waste stream
exergy losses (chemical exergy losses).
4.3. Setup of numerical analysis

For the deterministic model the expected (average) values of
yield (Fig. 2) and demand (Fig. 3) parameters are used. For the two-
stage stochastic programming model 100 scenarios are defined to
approximate the probability distribution functions of the yield and
demand. For all time periods (t) in each scenario (s), the following
four values are drawn from the Gaussian probability distribution
functions (with means and standard deviations as given in Section
4.2.): i) the yields in the first flush, ii) the yields in the second flush,
iii) the yields in the third flush, and iv) the demand values (dt;s). The
daily yield of mushroom (pdc;t;a;s) depending on mushrooms size
(c) at growing age (a) is obtained by dividing the simulated yields
per flush in i) e iii) across the productive days and according to the
usual ratios in practice for large, medium, and small mushrooms
(see Fig. 2). All values are simulated independently.

The deterministic and the two-stage stochastic programming
models are optimized with respect to the economic and environ-
mental objectives. The optimal objective function values are further
referred to as expected values of the deterministic and stochastic
model. All models are solved using Xpress-IVE version 7.9.

The eco-efficient solutions for the deterministic problem are
obtained by maximizing the economic objective, while varying in
ten iterations the allowed level of environmental impact. The same
levels of allowed environmental impact were used to derive effi-
cient solutions for the stochastic model.

After obtaining the solutions for each optimization approach, a
simulation is performed to benchmark the generated solutions.
Uncertain data parameters are simulated for each time period in
1000 scenarios. The optimal values of first stage variables are used
to examine the objective function values in the simulation. The
results obtained from simulations on the performance of the
objective function values are further called realized values of the
objective functions.
5. Results and discussion

This section presents the optimization results of the determin-
istic and the stochastic model as discussed in the previous section.
The deterministic model consists of 34,675 continuous variables
and 18,960 constraints. The two-stage stochastic programming
model consists of 359,890 continuous variables and 271,905 con-
straints. Optimal solutions for economic performance and envi-
ronmental impact correspond to a specific production plan, i.e. the
amount of compost produced on a given day in the substrate pro-
duction facility, the amount of compost cultivated each day at the
mushroom producer, and the amount of mushrooms sold at each
price level every day.

5.1. Single objective optimization

According to the results of the deterministic model, compost
should be cultivatedmostly for two flushes of mushrooms in order
to obtain maximal profit. The expected (annual) profit is
65.3� 106 V, and corresponds to 3.4� 109MJ of exergy losses.
However, according to the simulation results, the realized value of
profit is 3.9% lower than expected (Table 1). The expected profit of
the stochastic model turns out to be 1.9% less compared to the
expected profit of the deterministic model, but yields 1.8% higher
realized profit compared to the realized profit of the deterministic
model, corresponding to 1.1� 106 V more profit for the supply
chain on a yearly basis. At the same time 4% more compost is
cultivated in the best economic solution obtained for the sto-
chastic model, and therefore this solution is associated with a
higher value for exergy losses.

To obtain the best environmental solution, a lower bound on the
amount of profit at 90% of the best deterministic solution is intro-
duced. Results show that the best environmental solution mostly
refers to three flushes. Decisions on the number of used flushes
determine the total amount of cultivated compost, and therefore
also the total amount of waste accounting for the majority of
environmental impact.

Results show hardly any difference in the environmental per-
formance of expected and realized objective function values
(Table 1). The reason is that the amount of waste, which is not
associated with uncertainty in our study, accounts for the majority
of environmental impact, i.e. 98.7% for the best economic solutions
found.

5.2. Multi-objective optimization

The sets of eco-efficient solutions for bothmodels (including the
best stochastic solution found for the stochastic model), as well as
the objective function values based on simulation, are all presented
in Fig. 4. Each point on the efficient frontier corresponds to a spe-
cific production plan, and the extreme solutions of the efficient
frontier for the deterministic model are summarized in the previ-
ous subsection. It is observed that for each efficient frontier the
number of flushes used for cultivation change gradually from
mostly two for the best economic solutions, to mostly three for the
best environmental solution. This entails a lower amount of culti-
vated compost resulting in lower environmental impact due to less
produced waste.

Simulation results show a substantial reduction of the economic
performance for the deterministic cases. The expected profits and
the realized profits of the deterministic model (D1 and D2 in Fig. 4)
differ on average by 4.5%. This shows that not accounting for un-
certainty in optimization may lead to considerably lower values of
economic performance after the values of uncertain parameters
reveal. The difference between the expected and realized profit



Table 1
Summary of best economic and environmental solutions for deterministic and stochastic models as compared to the best economic solution of the deterministic model (shaded
cells).

Profit maximization Exergy loss minimization

Deterministic 

model

Stochastic 

model

Deterministic 

model

Stochastic 

model

expected (Profit) 100.00 % 98.10 % 90.00 % 90.00 %

realized (Profit) 96.07 % 97.82 % 86.03 % 89.59 %

expected (Exergy loss) 100.00 % 104.25 % 78.28 % 82.96 %

realized (Exergy loss) 100.00 % 104.25 % 78.28 % 82.96 %

Compost produced 100.00 % 104.25 % 78.06 % 82.81 %

2nd flush 98 % 97 % 18 % 45 %

3rd flush 2 % 3 % 82 % 55 %
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S1: expected (stochastic) S2: realized (stochastic)

Fig. 4. Eco-efficient solutions for deterministic and stochastic models.
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values obtained with stochastic model (S1 and S2) is on average
only 0.3%. It is found that accounting for uncertainty leads to more
realistic results, where the solutions of the model are on average
much closer to the realized (i.e. after uncertainty reveals) optimal
solutions. This clearly shows that accounting for the main sources
of uncertainty in agri-food supply chain optimization models is
important and leads to a better representation of the actual deci-
sion problem.

The ten best environmental solutions of D2 and S2 are consid-
ered to compare the solutions obtained from the deterministic and
stochastic model. The analysis shows that each deterministic so-
lution can be improved by including uncertainty in optimization.
The maximum difference between solutions is 1.2%, the minimum
difference is 0.2%, and the average difference is 0.5%, which corre-
sponds to over 0.3� 106 V more profit for the supply chain on a
yearly basis. At the same time it can be observed that accounting for
uncertainty amounts up to 5% reduction in environmental impact
(i.e. by moving from the best economic solution D2 left until
reaching S2 in Fig. 4).

Eco-efficient solutions allow to quantify the costs associated
with improvement of environmental impact. Based on the results
in Fig. 4, it can be calculated that e.g. the environmental impact of
the best economic solution obtained with stochastic programming
can be improved by 9% at the expense of 2% decrease in total profit.

In the presented model, uncertainty in technical model pa-
rameters is considered, i.e. uncertainty in yield, and demand pa-
rameters. Future research should account also for stochasticity in
environmental model parameters (i.e. uncertain environmental
impact associated with production), and economic model param-
eters (e.g. uncertainty related to selling prices). It will be interesting
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to explore the impact of uncertain environmental and economic
parameters on the reliability of solutions obtained in optimization.

6. Conclusions

Food production is intrinsically associated with various sources
of uncertainty, including production yields and demand patterns.
The effect of changes in model parameters is often analysed with
sensitivity analysis, which provide ex-post optimality analysis of
uncertain model parameters. In these analyses the focus is on
evaluating the sensitivity of an optimal solution to the value of
specific (uncertain) parameters. This provides confidence on the
optimal solution of the model. In sensitivity analysis, however,
uncertainty is not included explicitly in the optimization phase.
This may lead to production planning decisions, which, if imple-
mented, result in lower than expected overall economic and envi-
ronmental performance. Commonly in agri-food supply chains
there exists a substantial time lag between production decisions
and the revealed uncertainty of (production) parameters. The
decomposition of decisions into multiple stages can have an added
advantage above commonly applied deterministic approaches in
which all decisions are optimized at the beginning of the planning
horizon i.e. based on expected values for uncertain parameters. In
contrast to a deterministic approach, n-stage stochastic program-
ming partly allows to “postpone” decision making and to anticipate
in an early stage of the planning horizon on different outcomes of
future uncertainties. This paper clearly shows that amulti-objective
two-stage stochastic programming model has added value above
the deterministic model.

Numerical results of the presented industrial mushroom supply
chain case study show that using expected (deterministic) param-
eter values in optimization leads to an overestimated (4.5% on
average) economic performance that will hardly be realized in
practice. It is found that accounting for the main uncertain model
parameters i.e. yield and demand, leads to more realistic results,
where the economic performance is overestimated only 0.3% on
average. Accounting for stochasticity in important model parame-
ters reduces the difference between expected and realized perfor-
mance substantially, as compared to a model in which expected
values of parameters are used in optimization. It is concluded that
the set of eco-efficient solutions obtainedwith the stochastic model
provides a more accurate representation of the trade-off between
conflicting environmental and economic objectives. Moreover, it is
found that including stochastic model parameters in optimization
contributes to 5% reduction of the environmental impact (at the
same level for economic performance). This paper concludes that it
is important to account for the main sources of uncertainty in
optimizing production planning decisions in sustainable supply
chains, as it leads to substantial improvements, both in environ-
mental and economic performance of a supply chain.

Future case based research is needed to confirm the finding on
superiority on multi-stage decision making over deterministic
approach in general. It will be interesting to explore which uncer-
tain parameters play a crucial role in other real-life cases, and to
examine the impact of other realistic probability distribution
functions for those uncertain model parameters. Future research
should also investigate a scenario inwhich different links of a chain
do not cooperate and make production planning decisions in such
an uncertain environment while optimizing their own (single link
of a supply chain) objectives. It should then be investigated how the
benefits obtained from collaboration and from treating uncertainty
in optimization should be distributed between different links of an
agri-food supply chain.
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